Building generalizable models for discourse phenomena evaluation and machine translation
The neural revolution in machine translation has made it easier to model larger contexts beyond the sentence-level, which can potentially help resolve some discourse-level ambiguities and enable better translations. Despite increasing instances of machine translation systems including contextual...
Saved in:
主要作者: | Jwalapuram, Prathyusha |
---|---|
其他作者: | Joty Shafiq Rayhan |
格式: | Thesis-Doctor of Philosophy |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/165027 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Korean jamo-level byte-pair encoding for neural machine translation
由: Lee, Junyoung
出版: (2023) -
Application of machine learning in the forecast of stock index
由: Sugianto, Jason Jonathan
出版: (2022) -
Natural language translation with graph convolutional neural network
由: Zhu, Yimin
出版: (2018) -
Building SenticNet 7
由: Perh, Zhi Hao
出版: (2021) -
Machine learning for new friends recommendation in NTU
由: Niu, Jianan
出版: (2021)