Epilepsy detection with artificial neural network based on as-fabricated neuromorphic chip platform
Epilepsy is a serious neurological condition caused by a sudden abnormality of brain neurons. An accurate epilepsy detection based on electroencephalogram (EEG) signals can provide vital information for diagnosis and treatment. In this study, we propose a lightweight automatic epilepsy detection sys...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/165034 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Epilepsy is a serious neurological condition caused by a sudden abnormality of brain neurons. An accurate epilepsy detection based on electroencephalogram (EEG) signals can provide vital information for diagnosis and treatment. In this study, we propose a lightweight automatic epilepsy detection system with artificial neural network based on our as-fabricated neuromorphic chip. The proposed system utilizes a neural network model to achieve high-accuracy detection without the need for epilepsy-related prior knowledge. The model uses a filter module and a convolutional neural network to preprocess the raw EEG signal and uses a long short-term memory recurrent neural network and a fully connected network as the classifier. In the examination, the classification accuracy of the normal cases and seizures approaches 99.10%, and the accuracy of the normal cases, and interictal and seizure cases can reach 94.46%. This design provides possible epilepsy detection in wearable or portable devices. |
---|