Effectiveness of artificial intelligence methods in personalized aggression risk prediction within inpatient psychiatric treatment settings - a systematic review

Aggression risk assessments are vital to prevent injuries and morbidities amongst patients and staff in psychiatric settings. More recent studies have harnessed artificial intelligence (AI) methods such as machine learning algorithms to determine factors associated with aggression in psychiatric tre...

Full description

Saved in:
Bibliographic Details
Main Authors: Tay, Jing Ling, Li, Ziqiang, Sim, Kang
Other Authors: Lee Kong Chian School of Medicine (LKCMedicine)
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/165215
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Aggression risk assessments are vital to prevent injuries and morbidities amongst patients and staff in psychiatric settings. More recent studies have harnessed artificial intelligence (AI) methods such as machine learning algorithms to determine factors associated with aggression in psychiatric treatment settings. In this review, using Cooper's five-stage review framework, we aimed to evaluate the: (1) predictive accuracy, and (2) clinical variables associated with AI-based aggression risk prediction amongst psychiatric inpatients. Databases including PubMed, Cochrane, Scopus, PsycINFO, CINAHL were searched for relevant articles until April 2022. The eight included studies were independently evaluated using critical appraisal tools for systematic review developed by Joanna Briggs Institute. Most of the studies (87.5%) examined health records in predicting aggression and reported acceptable to excellent accuracy with specific machine learning algorithms employed (area under curve range 0.75-0.87). No particular machine learning algorithm outperformed the others consistently across studies (area under curve range 0.61-0.87). Relevant factors identified with aggression related to demographic and social profile, past aggression, forensic history, other psychiatric history, psychopathology, challenging behaviors and management domains. The limited extant studies have highlighted a potential role for the use of AI methods to clarify factors associated with aggression in psychiatric inpatient treatment settings.