Real-time data-processing framework with model updating for digital twins of water treatment facilities
Machine learning (ML) models are now widely used in digital twins of water treatment facilities. These models are commonly trained based on historical datasets, and their predictions serve various important objectives, such as anomaly detection and optimization. While predictions from the trained mo...
محفوظ في:
المؤلفون الرئيسيون: | Wei, Yuying, Law, Adrian Wing-Keung, Yang, Chun |
---|---|
مؤلفون آخرون: | School of Civil and Environmental Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/165234 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Combined anomaly detection framework for digital twins of water treatment facilities
بواسطة: Wei, Yuying, وآخرون
منشور في: (2022) -
Digital-twin-controlled ventilation for real-time resilience against transmission of airborne infectious disease in an indoor food court
بواسطة: Tan, Jonathan Koon Ngee, وآخرون
منشور في: (2024) -
Probabilistic digital twin of water treatment facilities
بواسطة: Wei, Yuying
منشور في: (2024) -
Combating obsolescence: Predictors of technical updating among engineers
بواسطة: Aryee, S.
منشور في: (2013) -
Genetic programming and its application in real-time runoff forecasting
بواسطة: Khu, S.T., وآخرون
منشور في: (2014)