Mechanochemical transduction of cells on extracellular matrix proteins.

Cellular growth and development are mediated by many factors. One of these factors includes the interaction of cells with extra-cellular matrix (ECM) proteins. This interaction exists in the form of mechanical attachments between ECM proteins and intracellular micro filaments though focal adhesion...

Full description

Saved in:
Bibliographic Details
Main Author: Ho, Benjamin Si Yuan.
Other Authors: Chan Vincent
Format: Final Year Project
Language:English
Published: 2009
Subjects:
Online Access:http://hdl.handle.net/10356/16525
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Cellular growth and development are mediated by many factors. One of these factors includes the interaction of cells with extra-cellular matrix (ECM) proteins. This interaction exists in the form of mechanical attachments between ECM proteins and intracellular micro filaments though focal adhesion sites. Cell traction force at the adhesion sites are mediated by intracellular actin filaments and myosin movements. This study is conducted to investigate traction force displacement of smooth muscle endothelial cells (SMC) with various ECM proteins; collagen I, fibronectin and laminin, cultured on a double layer polyacrylamide (PAL) gel substratum. The detection of traction forces lies in micro beads embedded in the PAL gel configuration. Analysis of these beads displacements were made using Particle Image Velocimetry (PIV) method, and the force displacements were translated into a displacement vectors, based on Minimum Quadratic Differences (MQD) algorithm. This study established a suitable protocol for synthesis of double layer polyacrylamide (PAL) gel substratum and presents a preliminary finding on the possible traction forces that SMC cells could induce when adhered to different ECM proteins. The results strongly suggest that focal adhesions formed by various integrin receptors displayed different mechanical characteristics and varies proportionally with cell spreading.