Class-incremental learning on multivariate time series via shape-aligned temporal distillation
Class-incremental learning (CIL) on multivariate time series (MTS) is an important yet understudied problem. Based on practical privacy-sensitive circumstances, we propose a novel distillation-based strategy using a single-headed classifier without saving historical samples. We propose to exploit So...
Saved in:
Main Authors: | , , , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/165392 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|