EdgeNAS: discovering efficient neural architectures for edge systems

Edge systems integrated with deep neural networks (DNNs) are deemed to pave the way for future artificial intelligence (AI). However, designing accurate and efficient DNNs for resource-limited edge systems is challenging as well as requires a huge amount of engineering efforts from human experts sin...

Full description

Saved in:
Bibliographic Details
Main Authors: Luo, Xiangzhong, Liu, Di, Kong, Hao, Liu, Weichen
Other Authors: School of Computer Science and Engineering
Format: Conference or Workshop Item
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/165560
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Edge systems integrated with deep neural networks (DNNs) are deemed to pave the way for future artificial intelligence (AI). However, designing accurate and efficient DNNs for resource-limited edge systems is challenging as well as requires a huge amount of engineering efforts from human experts since the design space is highly complex and diverse. Also, previous works mostly focus on designing DNNs with less floating-point operations (FLOPs), but indirect FLOPs count does not necessarily reflect the complexity of DNNs. To tackle these, we, in this paper, propose a novel neural architecture search (NAS) approach, namely EdgeNAS, to automatically discover efficient DNNs for less capable edge systems. To this end, we propose an end-to-end learning-based latency estimator, which is able to directly approximate the architecture latency on edge systems while incurring negligible computational overheads. Further, we effectively incorporate the latency estimator into EdgeNAS with a uniform sampling strategy, which guides the architecture search towards an edge-efficient direction. Moreover, a search space regularization approach is introduced to balance the trade-off between efficiency and accuracy. We evaluate EdgeNAS on the edge platform, Nvidia Jetson Xavier, with three popular datasets. Experimental results demonstrate the superiority of EdgeNAS over state-of-the-art approaches in terms of latency, accuracy, number of parameters, and the search cost.