Synchronising bus bunching to the spikes in service demand reduces commuters' waiting time

Bus bunching is ostensibly regarded as a detrimental phenomenon in bus systems. We study a bus loop with two bus stops, one regular bus stop and one spike bus stop, where bunched buses can outperform staggered buses. The spike bus stop models a bus stop connected to a train or metro service, where p...

Full description

Saved in:
Bibliographic Details
Main Authors: Vismara, Luca, Saw Vee-Liem, Chew, Lock Yue
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/165640
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Bus bunching is ostensibly regarded as a detrimental phenomenon in bus systems. We study a bus loop with two bus stops, one regular bus stop and one spike bus stop, where bunched buses can outperform staggered buses. The spike bus stop models a bus stop connected to a train or metro service, where passengers arrive in groups at periodic intervals (spikes). We introduce the configuration of synchronised bunched buses, where bunched buses wait for the spike in demand. For a wide range of parameters, synchronised bunched buses outperform perfectly staggered buses in terms of minimising the waiting time of commuters. We present an analytical formulation of the average waiting time in the case of bunched buses, synchronised bunched buses, and perfectly staggered buses with the consideration of different passenger demands, number of buses, and bus capacity. We demonstrate the validity of our analytical results through an agent-based simulation of the bus loop system.