Topology optimization and 3D printing of micro-drone: numerical design with experimental testing
The expanding capabilities and decreasing costs of additive manufacturing have resulted in the increased adoption of micro-unmanned aerial vehicles (micro-UAVs) among professionals and hobbyists. Due to safety regulatory requirements of UAV operations, weight is generally the overriding design featu...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/165785 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-165785 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1657852023-04-12T15:36:51Z Topology optimization and 3D printing of micro-drone: numerical design with experimental testing Yap, Yee Ling Toh, William Giam, Anthoni Yong, Feng Rong Chan, Keen Ian Tay, Justin Wei Sheng Teong, Soo Soon Lin, Rongming Ng, Teng Yong School of Mechanical and Aerospace Engineering Singapore Centre for 3D Printing Engineering::Mechanical engineering Topology Optimization Additive Manufacturing The expanding capabilities and decreasing costs of additive manufacturing have resulted in the increased adoption of micro-unmanned aerial vehicles (micro-UAVs) among professionals and hobbyists. Due to safety regulatory requirements of UAV operations, weight is generally the overriding design features of interest for micro-drones, but it often comes as a trade-off against the durability, loading constraints, and other subsystem equipment. Nevertheless, ultra-lightweight structures can be realized through the adoption of both 3D-printing and topology optimization without compromising the structural integrity and overall strength and this article explores the use of these two technologies for designing and manufacturing optimized ultralight micro-UAVs. First, material properties of Nylon 12 (PA12) manufactured using selective laser sintering (SLS) were accurately characterized via mechanical testing and ultrasonic means. These properties were verified by comparing the mechanical response of 3-point and 4-point bending tests with corresponding finite element (FE) simulation. Next, topology optimization was performed to produce an optimized structure of a Z-split configured lightweight micro-quadcopter. The optimized design is then 3D-printed and subsequently validated through a load test for verification against the optimized FE simulation-based design. A close correlation was obtained between the numerical and experimental data, suggesting that topology optimization with 3D printing can be safely and reliably adopted for the design and rapid prototyping of micro-UAVs, whilst catering to different specifications and requirements. National Research Foundation (NRF) Submitted/Accepted version This research is jointly supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Medium-Sized Centre funding scheme, and ST Engineering Aerospace Ltd., under project titled ‘3D Printing of micro UAV’. 2023-04-10T07:17:53Z 2023-04-10T07:17:53Z 2023 Journal Article Yap, Y. L., Toh, W., Giam, A., Yong, F. R., Chan, K. I., Tay, J. W. S., Teong, S. S., Lin, R. & Ng, T. Y. (2023). Topology optimization and 3D printing of micro-drone: numerical design with experimental testing. International Journal of Mechanical Sciences, 237, 107771-. https://dx.doi.org/10.1016/j.ijmecsci.2022.107771 0020-7403 https://hdl.handle.net/10356/165785 10.1016/j.ijmecsci.2022.107771 2-s2.0-85145585499 237 107771 en International Journal of Mechanical Sciences © 2022 Elsevier Ltd. All rights reserved. This paper was published in International Journal of Mechanical Sciences and is made available with permission of Elsevier Ltd. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Mechanical engineering Topology Optimization Additive Manufacturing |
spellingShingle |
Engineering::Mechanical engineering Topology Optimization Additive Manufacturing Yap, Yee Ling Toh, William Giam, Anthoni Yong, Feng Rong Chan, Keen Ian Tay, Justin Wei Sheng Teong, Soo Soon Lin, Rongming Ng, Teng Yong Topology optimization and 3D printing of micro-drone: numerical design with experimental testing |
description |
The expanding capabilities and decreasing costs of additive manufacturing have resulted in the increased adoption of micro-unmanned aerial vehicles (micro-UAVs) among professionals and hobbyists. Due to safety regulatory requirements of UAV operations, weight is generally the overriding design features of interest for micro-drones, but it often comes as a trade-off against the durability, loading constraints, and other subsystem equipment. Nevertheless, ultra-lightweight structures can be realized through the adoption of both 3D-printing and topology optimization without compromising the structural integrity and overall strength and this article explores the use of these two technologies for designing and manufacturing optimized ultralight micro-UAVs. First, material properties of Nylon 12 (PA12) manufactured using selective laser sintering (SLS) were accurately characterized via mechanical testing and ultrasonic means. These properties were verified by comparing the mechanical response of 3-point and 4-point bending tests with corresponding finite element (FE) simulation. Next, topology optimization was performed to produce an optimized structure of a Z-split configured lightweight micro-quadcopter. The optimized design is then 3D-printed and subsequently validated through a load test for verification against the optimized FE simulation-based design. A close correlation was obtained between the numerical and experimental data, suggesting that topology optimization with 3D printing can be safely and reliably adopted for the design and rapid prototyping of micro-UAVs, whilst catering to different specifications and requirements. |
author2 |
School of Mechanical and Aerospace Engineering |
author_facet |
School of Mechanical and Aerospace Engineering Yap, Yee Ling Toh, William Giam, Anthoni Yong, Feng Rong Chan, Keen Ian Tay, Justin Wei Sheng Teong, Soo Soon Lin, Rongming Ng, Teng Yong |
format |
Article |
author |
Yap, Yee Ling Toh, William Giam, Anthoni Yong, Feng Rong Chan, Keen Ian Tay, Justin Wei Sheng Teong, Soo Soon Lin, Rongming Ng, Teng Yong |
author_sort |
Yap, Yee Ling |
title |
Topology optimization and 3D printing of micro-drone: numerical design with experimental testing |
title_short |
Topology optimization and 3D printing of micro-drone: numerical design with experimental testing |
title_full |
Topology optimization and 3D printing of micro-drone: numerical design with experimental testing |
title_fullStr |
Topology optimization and 3D printing of micro-drone: numerical design with experimental testing |
title_full_unstemmed |
Topology optimization and 3D printing of micro-drone: numerical design with experimental testing |
title_sort |
topology optimization and 3d printing of micro-drone: numerical design with experimental testing |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/165785 |
_version_ |
1764208069114331136 |