SOK: homomorphic encryption in machine learning
The field of machine learning (ML) has become ubiquitous, with new systems and models being implemented in a diverse range of domains resulting in the widespread use of software-based training and inference on third-party cloud platforms. There is growing recognition that outsourcing and hosting mac...
Saved in:
主要作者: | Ramasubramanian, Nisha |
---|---|
其他作者: | Anupam Chattopadhyay |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/165976 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Homomorphic encryption(HE) enabled federated learning
由: Myat Nyein Soe
出版: (2020) -
Multi-key fully homomorphic encryption on machine learning models
由: Tan, Jian Wei
出版: (2025) -
Encrypted genomes: advancing personalized medicine with homomorphic encryption
由: Lee, Bryan Wei Han
出版: (2024) -
PRIVACY-PRESERVING COLLABORATIVE MACHINE LEARNING USING HOMOMORPHIC ENCRYPTION
由: JESTINE PAUL
出版: (2023) -
SoK: Towards the Science of security and privacy in machine learning
由: PAPERNOT, Nicolas, et al.
出版: (2018)