Handwritten mathematical expression recognition

Handwritten Mathematical Expressions Recognition (HMER) is a crucial problem in the field of artificial intelligence and machine learning, given the complexity and variability of handwriting in two dimensions. Existing approaches to HMER face challenges such as handwriting style variability, non-...

Full description

Saved in:
Bibliographic Details
Main Author: Ang, Brian Meng Hong
Other Authors: Loke Yuan Ren
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2023
Subjects:
Online Access:https://hdl.handle.net/10356/166072
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Handwritten Mathematical Expressions Recognition (HMER) is a crucial problem in the field of artificial intelligence and machine learning, given the complexity and variability of handwriting in two dimensions. Existing approaches to HMER face challenges such as handwriting style variability, non-standard symbols and notation, and errors and ambiguities in writing. In this study, we propose a novel approach to HMER using rotary position embeddings and a hybrid loss calculation of connectionist temporal classification and cross entropy to improve the accuracy of transformer-based models for recognizing cursive handwriting and complex equations. We train and test our approach on public databases from CHROHME 2014, 2016, and 2019 of offline HMEs. Our experiments demonstrate that our approach results in higher expression recognition rates and lower word error counts compared to existing approaches. Notably, our results are comparable to recent studies in the field, highlighting the potential of our approach to advance the state of the art in HMER.