Explainable AI for hypertension (HTN) development prediction
Developing trust in Artificial Intelligence (AI) has always been challenging due to the lack of transparency and understanding behind a black-box machine learning model. To address this issue, eXplainable Artificial Intelligence (XAI) has been proposed as a potential solution for achieving more tran...
Saved in:
主要作者: | Ong, Jocelyn Yu Lin |
---|---|
其他作者: | Fan Xiuyi |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/166079 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Fair and explainable AI empowered crowdsourcing
由: Liu, Howard Jianling
出版: (2020) -
Explainable AI model for ECG signal assessment
由: Low, Stefanie Jing Ting
出版: (2023) -
Developing AI attacks/defenses
由: Lim, Noel Wee Tat
出版: (2023) -
Developing AI attacks/defenses
由: Pang, Malcolm Qing Han
出版: (2022) -
AI development for a personal robot system
由: Sebastian
出版: (2022)