Supporting trimetallic metal-organic frameworks on S/N-doped carbon macroporous fibers for highly efficient electrocatalytic oxygen evolution

Hybrid materials, integrating the merits of individual components, are ideal structures for efficient oxygen evolution reaction (OER). However, the rational construction of hybrid structures with decent physical/electrochemical properties is yet challenging. Herein, a promising OER electrocatalyst c...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao, Yafei, Lu, Xue Feng, Wu, Zhi-Peng, Pei, Zhihao, Luan, Deyan, Lou, Xiong Wen David
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/166118
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Hybrid materials, integrating the merits of individual components, are ideal structures for efficient oxygen evolution reaction (OER). However, the rational construction of hybrid structures with decent physical/electrochemical properties is yet challenging. Herein, a promising OER electrocatalyst composed of trimetallic metal-organic frameworks supported over S/N-doped carbon macroporous fibers (S/N-CMF@FexCoyNi1-x-y-MOF) via a cation-exchange strategy is delicately fabricated. Benefiting from the trimetallic composition with improved intrinsic activity, hollow S/N-CMF matrix facilitating exposure of active sites, as well as their robust integration, the resultant S/N-CMF@FexCoyNi1-x-y-MOF electrocatalyst delivers outstanding activity and stability for alkaline OER. Specifically, it needs an overpotential of 296 mV to reach the benchmark current density of 10 mA cm−2 with a small Tafel slope of 53.5 mV dec−1. In combination with X-ray absorption fine structure spectroscopy and density functional theory calculations, the post-formed Fe/Co-doped γ-NiOOH during the OER operation is revealed to account for the high OER performance of S/N-CMF@FexCoyNi1-x-y-MOF.