Continuum of bound states in a non-hermitian model
In a Hermitian system, bound states must have quantized energies, whereas free states can form a continuum. We demonstrate how this principle fails for non-Hermitian systems, by analyzing non-Hermitian continuous Hamiltonians with an imaginary momentum and Landau-type vector potential. The eigenstat...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/166240 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In a Hermitian system, bound states must have quantized energies, whereas free states can form a continuum. We demonstrate how this principle fails for non-Hermitian systems, by analyzing non-Hermitian continuous Hamiltonians with an imaginary momentum and Landau-type vector potential. The eigenstates, which we call "continuum Landau modes" (CLMs), have Gaussian spatial envelopes and form a continuum filling the complex energy plane. We present experimentally realizable 1D and 2D lattice models that host CLMs; the lattice eigenstates are localized and have other features matching the continuous model. One of these lattices can serve as a rainbow trap, whereby the response to an excitation is concentrated at a position proportional to the frequency. Another lattice can act a wave funnel, concentrating an input excitation onto a boundary over a wide frequency bandwidth. Unlike recent funneling schemes based on the non-Hermitian skin effect, this requires a simple lattice design with reciprocal couplings. |
---|