A dual-locked tandem fluorescent probe for imaging of pyroptosis in cancer chemo-immunotherapy

Real-time imaging of programmed cancer cell death (PCD) is imperative to monitor cancer therapeutic efficacy and tailor therapeutic regimens; however, specific in vivo detection of intratumoral pyroptosis remains challenging. Herein, a dual-locked and tandem activatable probe (DTAP) is reported for...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Xinzhu, He, Shasha, Cheng, Penghui, Pu, Kanyi
Other Authors: Lee Kong Chian School of Medicine (LKCMedicine)
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/166273
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Real-time imaging of programmed cancer cell death (PCD) is imperative to monitor cancer therapeutic efficacy and tailor therapeutic regimens; however, specific in vivo detection of intratumoral pyroptosis remains challenging. Herein, a dual-locked and tandem activatable probe (DTAP) is reported for near-infrared fluorescence (NIRF) imaging of intratumoral pyroptosis during cancer chemo-immunotherapy in living mice. The probe comprises a hemicyanine dye dual-locked with an enzyme-responsive moiety that can be tandemly cleaved by pyroptosis-related biomarker (Caspase-1) and cancer biomarker (GGT) to turn on its NIRF signal. As pyroptosis plays a vital role in triggering anti-tumor immune responses, the activated signal of DTAP correlates well with the population of tumor-infiltrating cytotoxic T lymphocytes and tumor growth inhibition, consequently permitting the prediction of cancer therapeutic efficacy. This study also provides a non-invasive technique to study the regulatory mechanism of pyroptosis in cancer therapy and to optimize cancer chemo-immunotherapies for precision medicine.