A two-dimensional mid-infrared optoelectronic retina enabling simultaneous perception and encoding

Infrared machine vision system for object perception and recognition is becoming increasingly important in the Internet of Things era. However, the current system suffers from bulkiness and inefficiency as compared to the human retina with the intelligent and compact neural architecture. Here, we pr...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Wang, Fakun, Hu, Fangchen, Dai, Mingjin, Zhu, Song, Sun, Fangyuan, Duan, Ruihuan, Wang, Chongwu, Han, Jiayue, Deng, Wenjie, Chen, Wenduo, Ye, Ming, Han, Song, Qiang, Bo, Jin, Yuhao, Chua, Yunda, Chi, Nan, Yu, Shaohua, Nam, Donguk, Chae, Sang Hoon, Liu, Zheng, Wang, Qi Jie
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: مقال
اللغة:English
منشور في: 2023
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/166358
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Infrared machine vision system for object perception and recognition is becoming increasingly important in the Internet of Things era. However, the current system suffers from bulkiness and inefficiency as compared to the human retina with the intelligent and compact neural architecture. Here, we present a retina-inspired mid-infrared (MIR) optoelectronic device based on a two-dimensional (2D) heterostructure for simultaneous data perception and encoding. A single device can perceive the illumination intensity of a MIR stimulus signal, while encoding the intensity into a spike train based on a rate encoding algorithm for subsequent neuromorphic computing with the assistanceofanall-opticalexcitationmechanism, a stochastic near-infrared (NIR) sampling terminal. The device features wide dynamic working range, high encoding precision, and flexible adaption ability to the MIR intensity. Moreover, an inference accuracy more than 96% toMIR MNIST data set encoded by the device is achieved using a trained spiking neural network (SNN).