Kernel ridge regression for generalized graph signal processing
In generalized graph signal processing (GGSP), a function (an element from a separable Hilbert space) is associated with each vertex. To perform non-linear filtering and regression under the GGSP framework, we formulate an operator-valued kernel ridge regression (KRR) filtering approach. Under a spe...
Saved in:
Main Authors: | , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/166434 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |