Effect of cardiolipin on aquaporin Z: a cryo-EM study

Aquaporins are a family of transmembrane channel proteins responsible for osmoregulation in biological systems. Despite their important physiological role, modulators of aquaporin activity are still not available. An anionic lipid, cardiolipin, was found to stabilize aquaporin Z (AqpZ), an aquaporin...

全面介紹

Saved in:
書目詳細資料
主要作者: Leo, Zhenn Yi
其他作者: Jaume Torres
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2023
主題:
在線閱讀:https://hdl.handle.net/10356/166518
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Aquaporins are a family of transmembrane channel proteins responsible for osmoregulation in biological systems. Despite their important physiological role, modulators of aquaporin activity are still not available. An anionic lipid, cardiolipin, was found to stabilize aquaporin Z (AqpZ), an aquaporin found in E. coli, and increase its water permeability. This paper focuses on the cryo-EM structural determination of AqpZ in nanodiscs, with and without added E. coli cardiolipin, to understand the mechanism by which cardiolipin stabilizes and increases the activity of AqpZ. This understanding could facilitate the development of drugs capable of modulating aquaporin activity. Single particle analysis (SPA) of cryo-EM data yielded a 6.3 Å structure of AqpZ in lipid environment. Comparison of this structure with the X-ray crystal structure of AqpZ in octyl glucoside detergent revealed minor structural differences. The resolution of the structure obtained was likely limited due to the high symmetry of the tetrameric molecule resulting in poor alignment of particles during SPA. A fusion protein construct of maltose-binding protein (MBP) and AqpZ was designed to introduce asymmetry to the molecule. The purified protein was shown to tetramerize in mild detergents, indicating that MBP-AqpZ is a suitable candidate for reconstitution into nanodiscs for cryo-EM data collection.