Ultralow energy domain wall device for spin-based neuromorphic computing

Neuromorphic computing (NC) is gaining wide acceptance as a potential technology to achieve low-power intelligent devices. To realize NC, researchers investigate various types of synthetic neurons and synaptic devices, such as memristors and spintronic devices. In comparison, spintronics-based neuro...

Full description

Saved in:
Bibliographic Details
Main Authors: Kumar, Durgesh, Chung, Hong Jing, Chan, Jianpeng, Jin, Tianli, Lim, Sze Ter, Parkin, Stuart S. P., Sbiaa, Rachid, Piramanayagam, S. N.
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/166534
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Neuromorphic computing (NC) is gaining wide acceptance as a potential technology to achieve low-power intelligent devices. To realize NC, researchers investigate various types of synthetic neurons and synaptic devices, such as memristors and spintronic devices. In comparison, spintronics-based neurons and synapses have potentially higher endurance. However, for realizing low-power devices, domain wall (DW) devices that show DW motion at low energies─typically below pJ/bit─are favored. Here, we demonstrate DW motion at current densities as low as 106 A/m2 by engineering the β-W spin-orbit coupling (SOC) material. With our design, we achieve ultralow pinning fields and current density reduction by a factor of 104. The energy required to move the DW by a distance of about 18.6 μm is 0.4 fJ, which translates into the energy consumption of 27 aJ/bit for a bit-length of 1 μm. With a meander DW device configuration, we have established a controlled DW motion for synapse applications and have shown the direction to make ultralow energy spin-based neuromorphic elements.