Implementation of high-performance graph neural network distributed learning framework
Graph Neural Network (GNN), which uses a neural network architecture to effectively learn information organized in graphs with nodes and edges, has been a popular topic in deep learning research in recent years. Generally, distributed deep learning uses multiple devices to collaboratively train a gl...
Saved in:
主要作者: | Lee, Cheng Han |
---|---|
其他作者: | Luo Siqiang |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/166564 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Federated learning for graph neural networks
由: Yan, Yige
出版: (2023) -
Federated graph neural network
由: Koh, Tat You @ Arthur
出版: (2021) -
Benchmarking novel graph neural networks
由: Bhagwat, Abhishek
出版: (2021) -
An investigation of the application of graph neural networks in recommendation systems
由: Koh, Jaylene Jia Ying
出版: (2023) -
Graph convolutional neural networks for text categorization
由: Lakhotia, Suyash
出版: (2018)