Deep neural network with fuzzy inputs for portfolio management
Deep learning is a type of machine learning that attempts to simulate the learning behavior of our human brain. Such model with neural networks that consist of multiple layers can learn from large amount of data. Despite the capabilities of deep learning, the learning process itself is still a black...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/166952 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-166952 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1669522023-05-19T15:37:32Z Deep neural network with fuzzy inputs for portfolio management Lim, Alston Khian Heng Quek Hiok Chai School of Computer Science and Engineering ASHCQUEK@ntu.edu.sg Engineering::Computer science and engineering::Computer applications::Physical sciences and engineering Deep learning is a type of machine learning that attempts to simulate the learning behavior of our human brain. Such model with neural networks that consist of multiple layers can learn from large amount of data. Despite the capabilities of deep learning, the learning process itself is still a black box. As researchers and even just as end users of deep learning, we are curious to find out the learning process that takes place in the black box instead of blindly trusting the outcome it produces. This dissertation explores an Interpretable Fuzzy Neural Network that allows us to better understand the learning process that takes place within the black box through fuzzy logic in the intelligent system. The model will be applied algorithmic finance to firstly predict future stock prices, and by extension predict trend reversals using technical indicators. The performance of the model will be evaluated through back testing and comparing against the performance of a benchmark. Bachelor of Business Bachelor of Engineering (Computer Science) 2023-05-19T12:36:25Z 2023-05-19T12:36:25Z 2023 Final Year Project (FYP) Lim, A. K. H. (2023). Deep neural network with fuzzy inputs for portfolio management. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/166952 https://hdl.handle.net/10356/166952 en SCSE22-0105 application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Computer science and engineering::Computer applications::Physical sciences and engineering |
spellingShingle |
Engineering::Computer science and engineering::Computer applications::Physical sciences and engineering Lim, Alston Khian Heng Deep neural network with fuzzy inputs for portfolio management |
description |
Deep learning is a type of machine learning that attempts to simulate the learning behavior of our human brain. Such model with neural networks that consist of multiple layers can learn from large amount of data. Despite the capabilities of deep learning, the learning process itself is still a black box. As researchers and even just as end users of deep learning, we are curious to find out the learning process that takes place in the black box instead of blindly trusting the outcome it produces.
This dissertation explores an Interpretable Fuzzy Neural Network that allows us to better understand the learning process that takes place within the black box through fuzzy logic in the intelligent system. The model will be applied algorithmic finance to firstly predict future stock prices, and by extension predict trend reversals using technical indicators. The performance of the model will be evaluated through back testing and comparing against the performance of a benchmark. |
author2 |
Quek Hiok Chai |
author_facet |
Quek Hiok Chai Lim, Alston Khian Heng |
format |
Final Year Project |
author |
Lim, Alston Khian Heng |
author_sort |
Lim, Alston Khian Heng |
title |
Deep neural network with fuzzy inputs for portfolio management |
title_short |
Deep neural network with fuzzy inputs for portfolio management |
title_full |
Deep neural network with fuzzy inputs for portfolio management |
title_fullStr |
Deep neural network with fuzzy inputs for portfolio management |
title_full_unstemmed |
Deep neural network with fuzzy inputs for portfolio management |
title_sort |
deep neural network with fuzzy inputs for portfolio management |
publisher |
Nanyang Technological University |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/166952 |
_version_ |
1772826632284798976 |