Machining of 2D material by ultrasonic embossing
As popularity of 2D material has increased over the years since the discovery of Graphene in 2004, their usage in the field was also characterised by their properties. Graphene for its mechanical properties like high strength, stiffness, toughness, and conductivity. Hexagonal Boron Nitride for its c...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/166953 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-166953 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1669532023-05-20T16:51:22Z Machining of 2D material by ultrasonic embossing Seow, Colvis Wei Chen Hong Li School of Mechanical and Aerospace Engineering Ge Junyu ehongli@ntu.edu.sg Engineering::Mechanical engineering As popularity of 2D material has increased over the years since the discovery of Graphene in 2004, their usage in the field was also characterised by their properties. Graphene for its mechanical properties like high strength, stiffness, toughness, and conductivity. Hexagonal Boron Nitride for its chemical inertness and electrical insulation properties. By working with 2D materials in the nanoscale, the author hopes to understand and gauge their properties in the quantum scale. Hence, in this report the author will share the process of creating nanostructures and nanodots from Graphene and Hexagonal Boron Nitride with the use of ultrasonic embossing on substrate materials like silver and copper whilst exploring the parameters used to obtain the highest yield of nanostructures. From previous studies and research on similar topics, the fundamental method of choice for sample preparation will be the top-down mechanical exfoliation. More commonly known as the “Scotch-tape” method. The author will also be testing out other methods of sample preparation for bulk materials that are already in the powdered form. With existing studies of ultrasonic embossing on other types of 2D materials, the author started off with a familiarisation process with the type and characteristics of the materials and equipment. On the other hand, skill sets employed during the experiment such as delicate handling of samples and skilful usage of the scanning electron microscope needs to be gained through repeated practices. The results obtained from the ultrasonic embossing confirms that the greatest yield of nanostructures falls within the range of 1300N – 1400N for welding and holding forces and embossing amplitude ranging from 17% - 22%. Bachelor of Engineering (Mechanical Engineering) 2023-05-17T02:01:54Z 2023-05-17T02:01:54Z 2023 Final Year Project (FYP) Seow, C. W. C. (2023). Machining of 2D material by ultrasonic embossing. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/166953 https://hdl.handle.net/10356/166953 en application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Mechanical engineering |
spellingShingle |
Engineering::Mechanical engineering Seow, Colvis Wei Chen Machining of 2D material by ultrasonic embossing |
description |
As popularity of 2D material has increased over the years since the discovery of Graphene in 2004, their usage in the field was also characterised by their properties. Graphene for its mechanical properties like high strength, stiffness, toughness, and conductivity. Hexagonal Boron Nitride for its chemical inertness and electrical insulation properties. By working with 2D materials in the nanoscale, the author hopes to understand and gauge their properties in
the quantum scale. Hence, in this report the author will share the process of creating nanostructures and nanodots from Graphene and Hexagonal Boron Nitride with the use of ultrasonic embossing on substrate materials like silver and copper whilst exploring the
parameters used to obtain the highest yield of nanostructures. From previous studies and research on similar topics, the fundamental method of choice for sample preparation will be the top-down mechanical exfoliation. More commonly known as the “Scotch-tape” method.
The author will also be testing out other methods of sample preparation for bulk materials that are already in the powdered form. With existing studies of ultrasonic embossing on other types of 2D materials, the author started off with a familiarisation process with the
type and characteristics of the materials and equipment. On the other hand, skill sets employed during the experiment such as delicate handling of samples and skilful usage of the scanning electron microscope needs to be gained through repeated practices. The
results obtained from the ultrasonic embossing confirms that the greatest yield of nanostructures falls within the range of 1300N – 1400N for welding and holding forces and embossing amplitude ranging from 17% - 22%. |
author2 |
Hong Li |
author_facet |
Hong Li Seow, Colvis Wei Chen |
format |
Final Year Project |
author |
Seow, Colvis Wei Chen |
author_sort |
Seow, Colvis Wei Chen |
title |
Machining of 2D material by ultrasonic embossing |
title_short |
Machining of 2D material by ultrasonic embossing |
title_full |
Machining of 2D material by ultrasonic embossing |
title_fullStr |
Machining of 2D material by ultrasonic embossing |
title_full_unstemmed |
Machining of 2D material by ultrasonic embossing |
title_sort |
machining of 2d material by ultrasonic embossing |
publisher |
Nanyang Technological University |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/166953 |
_version_ |
1772826555348680704 |