Buckling and vibration analysis of compressively loaded coil springs by finite element method

In numerous mechanical applications, compression coil springs are widely used. An example would be the automotive suspension systems. In such applications, the springs are subjected to compressive loads, as well as vibrations and shocks. It is thus important to investigate the performance characteri...

全面介紹

Saved in:
書目詳細資料
主要作者: Tan, Tedrick Heng Wee
其他作者: Sellakkutti Rajendran
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2023
主題:
在線閱讀:https://hdl.handle.net/10356/167157
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In numerous mechanical applications, compression coil springs are widely used. An example would be the automotive suspension systems. In such applications, the springs are subjected to compressive loads, as well as vibrations and shocks. It is thus important to investigate the performance characteristics of compression coil springs such as the critical buckling load and natural frequencies. In this final year project (FYP), the behaviours of the compression coil springs are studied using Finite Element Analysis (FEA). Static analysis, free vibration analysis, and buckling analysis are carried out to understand how a compression coil spring performs under compressive loads. ANSYS Workbench is selected for the FEA. A comparison between conventional compression coil springs (solid cross-section helical coil springs) and unconventional compression coil springs (hollow cross-section helical coil springs) is done in order to explore the use of unconventional springs in the automotive industry, specifically in the coil spring suspension system. Two main boundary conditions, viz. fixed-fixed and fixed-free ends are considered.