DED process parameters optimization via experiments

The additive manufacturing (AM) technique Directed Energy Deposition (DED) specializes in mending, quick prototyping, and low-volume part manufacturing. Due to its tremendous advantages, it is commonly employed in various sectors, such as aerospace, healthcare, and the military. A common material to...

Full description

Saved in:
Bibliographic Details
Main Author: Lee, Anthony Kai Zhe
Other Authors: Li Hua
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2023
Subjects:
Online Access:https://hdl.handle.net/10356/167312
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The additive manufacturing (AM) technique Directed Energy Deposition (DED) specializes in mending, quick prototyping, and low-volume part manufacturing. Due to its tremendous advantages, it is commonly employed in various sectors, such as aerospace, healthcare, and the military. A common material to work with is 316L stainless steel because of its excellent tensile and corrosion-resistant qualities. For this project, 5 process parameters (Laser Power, Scanning Speed, Powder Mass flow rate, XY-Incremental ratio, and Z Incremental ratio) were varied with different values to get a correlation with the microstructure parameters (Grain Area, Grain Ellipse aspect ratio, and Grain angle) and the mechanical property (Ultimate Tensile Strength) of a multi-layer multi-track deposition. The microstructure was analysed using Electron Backscatter Diffraction (EBSD) method and a relationship between the process parameters, microstructure parameters, and the ultimate tensile strength was concluded.