EMNAPE: efficient multi-dimensional neural architecture pruning for EdgeAI
In this paper, we propose a multi-dimensional pruning framework, EMNAPE, to jointly prune the three dimensions (depth, width, and resolution) of convolutional neural networks (CNNs) for better execution efficiency on embedded hardware. In EMNAPE, we introduce a two-stage evaluation strategy to evalu...
Saved in:
Main Authors: | Kong, Hao, Luo, Xiangzhong, Huai, Shuo, Liu, Di, Subramaniam, Ravi, Makaya, Christian, Lin, Qian, Liu, Weichen |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/167488 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
EdgeCompress: coupling multi-dimensional model compression and dynamic inference for EdgeAI
由: Kong, Hao, et al.
出版: (2023) -
Towards efficient convolutional neural network for embedded hardware via multi-dimensional pruning
由: Kong, Hao, et al.
出版: (2023) -
On hardware-aware design and optimization of edge intelligence
由: Huai, Shuo, et al.
出版: (2023) -
Latency-constrained DNN architecture learning for edge systems using zerorized batch normalization
由: Huai, Shuo, et al.
出版: (2023) -
Bringing AI to edge : from deep learning's perspective
由: Liu, Di, et al.
出版: (2022)