EMNAPE: efficient multi-dimensional neural architecture pruning for EdgeAI
In this paper, we propose a multi-dimensional pruning framework, EMNAPE, to jointly prune the three dimensions (depth, width, and resolution) of convolutional neural networks (CNNs) for better execution efficiency on embedded hardware. In EMNAPE, we introduce a two-stage evaluation strategy to evalu...
Saved in:
Main Authors: | , , , , , , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/167488 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |