Towards efficient convolutional neural network for embedded hardware via multi-dimensional pruning
In this paper, we propose TECO, a multi-dimensional pruning framework to collaboratively prune the three dimensions (depth, width, and resolution) of convolutional neural networks (CNNs) for better execution efficiency on embedded hardware. In TECO, we first introduce a two-stage importance evaluati...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/167489 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this paper, we propose TECO, a multi-dimensional pruning framework to collaboratively prune the three dimensions (depth, width, and resolution) of convolutional neural networks (CNNs) for better execution efficiency on embedded hardware. In TECO, we first introduce a two-stage importance evaluation framework, which efficiently and comprehensively evaluates each pruning unit according to both the local importance inside each dimension and the global importance across different dimensions. Based on the evaluation framework, we present a heuristic pruning algorithm to progressively prune the three dimensions of CNNs towards the optimal trade-off between accuracy and efficiency. Experiments on multiple benchmarks validate the advantages of TECO over existing state-of-the-art (SOTA) approaches. The code and pre-trained models are available anonymously at https://github.com/ntuliuteam/Teco. |
---|