Deep learning enhanced anti-counterfeiting security tags made from thin films
In recent years, anti-counterfeiting methods have become increasingly important for ensuring the authenticity of physical objects. These methods can be categorized into physical, electronic, chemical, and mechanical methods. In this paper, we focus specifically on physical anti-counterfeiting method...
Saved in:
主要作者: | |
---|---|
其他作者: | |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/167576 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | In recent years, anti-counterfeiting methods have become increasingly important for ensuring the authenticity of physical objects. These methods can be categorized into physical, electronic, chemical, and mechanical methods. In this paper, we focus specifically on physical anti-counterfeiting methods and investigate the feasibility of using machine learning to improve the accuracy and efficiency of identifying and authenticating Physical Unclonable Functions (PUFs). Our study aims to enhance existing solutions by exploring the potential of machine learning models in the context of PUFs. Through our experiments, we aim to provide a better understanding of the capabilities and limitations of this approach and to identify areas for future research. |
---|