Numerical simulation of micro-cracked interface
The presence of imperfections, such as microcracks, along the interface between two materials can significantly influence their mechanical behaviour. In this paper, we present a detailed review of the micromechanics of imperfect interfaces and their effects on material behaviour under tensile and sh...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/167641 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-167641 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1676412023-06-03T16:51:08Z Numerical simulation of micro-cracked interface Ahmad Fauzy Bin Mohammed Gasi Fan Hui School of Mechanical and Aerospace Engineering MHFAN@ntu.edu.sg Engineering::Mechanical engineering The presence of imperfections, such as microcracks, along the interface between two materials can significantly influence their mechanical behaviour. In this paper, we present a detailed review of the micromechanics of imperfect interfaces and their effects on material behaviour under tensile and shear loading. Finite element analysis is performed using ABAQUS on both micro and macro models to investigate the total strain energy and effective stiffness of the interface. Through simulations and comparisons, we analyse on the behaviour of microcracks at the interface. Our findings reveals that the presence of interfacial microcracks tends to lower the effective stiffness of the interface, indicating a weakening bond between the materials. We also observe that various factors have significant effects on the effective stiffness of the interface, providing insights into the intricate mechanics of microcrack behaviour under different loading conditions. This study contributes to a better understanding of the behaviour of imperfect interfaces and their implications in the design and performance assessment of materials and structures in engineering applications. The findings can aid in the development of improved models and approaches for predicting the mechanical behaviour of materials with imperfect interfaces, leading to enhanced design and performance of engineered structures. Bachelor of Engineering (Mechanical Engineering) 2023-05-31T02:44:00Z 2023-05-31T02:44:00Z 2023 Final Year Project (FYP) Ahmad Fauzy Bin Mohammed Gasi (2023). Numerical simulation of micro-cracked interface. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/167641 https://hdl.handle.net/10356/167641 en B080 application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Mechanical engineering |
spellingShingle |
Engineering::Mechanical engineering Ahmad Fauzy Bin Mohammed Gasi Numerical simulation of micro-cracked interface |
description |
The presence of imperfections, such as microcracks, along the interface between two materials can significantly influence their mechanical behaviour. In this paper, we present a detailed review of the micromechanics of imperfect interfaces and their effects on material behaviour under tensile and shear loading. Finite element analysis is performed using ABAQUS on both micro and macro models to investigate the total strain energy and effective stiffness of the interface.
Through simulations and comparisons, we analyse on the behaviour of microcracks at the interface. Our findings reveals that the presence of interfacial microcracks tends to lower the effective stiffness of the interface, indicating a weakening bond between the materials. We also observe that various factors have significant effects on the effective stiffness of the interface, providing insights into the intricate mechanics of microcrack behaviour under different loading conditions.
This study contributes to a better understanding of the behaviour of imperfect interfaces and their implications in the design and performance assessment of materials and structures in engineering applications. The findings can aid in the development of improved models and approaches for predicting the mechanical behaviour of materials with imperfect interfaces, leading to enhanced design and performance of engineered structures. |
author2 |
Fan Hui |
author_facet |
Fan Hui Ahmad Fauzy Bin Mohammed Gasi |
format |
Final Year Project |
author |
Ahmad Fauzy Bin Mohammed Gasi |
author_sort |
Ahmad Fauzy Bin Mohammed Gasi |
title |
Numerical simulation of micro-cracked interface |
title_short |
Numerical simulation of micro-cracked interface |
title_full |
Numerical simulation of micro-cracked interface |
title_fullStr |
Numerical simulation of micro-cracked interface |
title_full_unstemmed |
Numerical simulation of micro-cracked interface |
title_sort |
numerical simulation of micro-cracked interface |
publisher |
Nanyang Technological University |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/167641 |
_version_ |
1772825303571234816 |