Spatial-temporal sensor data imputation in traffic data modelling
The traffic data corrupted by missing data significantly limit the robustness of traffic modelling. Our research aims to develop modelling techniques for data imputation tasks. Our first work is to impute speed data by an RBF based fitting approach for multivariate data matrixes with irregular locat...
Saved in:
主要作者: | Nie, Helei |
---|---|
其他作者: | Zheng Jianmin |
格式: | Thesis-Master by Research |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/167860 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Missing data imputation for solar yield prediction using temporal multi-modal variational auto-encoder
由: Shen, Meng, et al.
出版: (2021) -
Tensor decomposition for spatial-temporal traffic flow prediction with sparse data
由: Yang, Funing, et al.
出版: (2021) -
Missing traffic data imputation with a linear generative model based on probabilistic principal component analysis
由: Huang, Liping, et al.
出版: (2023) -
Data imputation
由: ROSENTHAL, Sonny
出版: (2017) -
Imputation of missing values in breast cancer data
由: Rajagopal, Tejas R.
出版: (2024)