Enhancing federated learning with spectrum allocation optimization and device selection
Machine learning (ML) is a widely accepted means for supporting customized services for mobile devices and applications. Federated Learning (FL), which is a promising approach to implement machine learning while addressing data privacy concerns, typically involves a large number of wireless mobile d...
محفوظ في:
المؤلفون الرئيسيون: | Zhang, Tinghao, Lam, Kwok-Yan, Zhao, Jun, Li, Feng, Han, Huimei, Norziana Jamil |
---|---|
مؤلفون آخرون: | School of Computer Science and Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/168030 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Joint optimization of energy consumption and completion time in federated learning
بواسطة: Zhou, Xinyu, وآخرون
منشور في: (2022) -
Spectrum allocation with asymmetric monopoly model for multibeam-based cognitive satellite networks
بواسطة: Li, Feng, وآخرون
منشور في: (2018) -
Deep reinforcement learning based scheduling strategy for federated learning in sensor-cloud systems
بواسطة: Zhang, Tinghao, وآخرون
منشور في: (2023) -
Joint device scheduling and bandwidth allocation for federated learning over wireless networks
بواسطة: Zhang, Tinghao, وآخرون
منشور في: (2024) -
Dynamic spectrum access for Internet-of-Things with hierarchical federated deep reinforcement learning
بواسطة: Zhang, Songbo, وآخرون
منشور في: (2023)