K-means clustering with local dᵪ-privacy for privacy-preserving data analysis
Privacy-preserving data analysis is an emerging area that addresses the dilemma of performing data analysis on user data while protecting users' privacy. In this paper, we consider the problem of constructing privacy-preserving K -means clustering protocol for data analysis that provides local...
Saved in:
Main Authors: | Yang, Mengmeng, Tjuawinata, Ivan, Lam, Kwok-Yan |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/168038 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Secure hot path crowdsourcing with local differential privacy under fog computing architecture
由: Yang, Mengmeng, et al.
出版: (2021) -
PRIVACY PRESERVING METHODS FOR LOCALIZATION
由: FENG TIANYI
出版: (2021) -
Local differential privacy and its applications: a comprehensive survey
由: Yang, Mengmeng, et al.
出版: (2024) -
SPoFC: a framework for stream data aggregation with local differential privacy
由: Yang, Mengmeng, et al.
出版: (2023) -
Local differential privacy-based federated learning for Internet of Things
由: Zhao, Yang, et al.
出版: (2021)