Deep learning for facial expression editing

In this day and age of digital media, facial expression editing, which aims to transform the facial expression of a source facial image to a desired one without changing the face identity, has attracted increasing interest from both academia and industrial communities due to its wide applications in...

全面介紹

Saved in:
書目詳細資料
主要作者: Wu, Rongliang
其他作者: Lu Shijian
格式: Thesis-Doctor of Philosophy
語言:English
出版: Nanyang Technological University 2023
主題:
在線閱讀:https://hdl.handle.net/10356/168477
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In this day and age of digital media, facial expression editing, which aims to transform the facial expression of a source facial image to a desired one without changing the face identity, has attracted increasing interest from both academia and industrial communities due to its wide applications in many tasks. Automatic facial expression editing has been explored extensively with the prevalence of generative adversarial networks in recent years. Although some research works have been reported and achieved very promising progress, the task of facial expression editing is still facing four major challenges, including the unsatisfactory editing quality issue, the constrained data annotation issue, the limited controllability issue and the multi-modality issue. This thesis focuses on the above-mentioned challenges in facial expression editing task and introduces several novel deep-learning-based techniques to alleviate the corresponding challenges. Extensive experiments show that the proposed approaches achieve superior performance in facial expression editing.