Zero-shot text classification via self-supervised tuning

Existing solutions to zero-shot text classification either conduct prompting with pre-trained language models, which is sensitive to the choices of templates, or rely on large-scale annotated data of relevant tasks for meta-tuning. In this work, we propose a new paradigm based on self-supervised...

全面介紹

Saved in:
書目詳細資料
Main Authors: Liu, Chaoqun, Zhang, Wenxuan, Chen, Guizhen, Wu, Xiaobao, Luu, Anh Tuan, Chang, Chip Hong, Bing, Lidong
其他作者: Interdisciplinary Graduate School (IGS)
格式: Conference or Workshop Item
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/168505
https://2023.aclweb.org/
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English