The effect of the hydroxyl group position on the electrochemical reactivity and product selectivity of butanediol electro-oxidation

This article presents a study on the effect of the hydroxyl group position on the electro-oxidation of butanediols, including 1,2-butanediol, 2,3-butanediol, 1,3-butanediol, and 1,4-butanediol. The effect of the hydroxyl group position in butanediols on their electro-oxidation reactivities is invest...

全面介紹

Saved in:
書目詳細資料
Main Authors: Sun, Shengnan, Dai, Chencheng, Sun, Libo, Seh, Zhi Wei, Sun, Yuanmiao, Fisher, Adrian, Wang, Xin, Xu, Jason Zhichuan
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/168545
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:This article presents a study on the effect of the hydroxyl group position on the electro-oxidation of butanediols, including 1,2-butanediol, 2,3-butanediol, 1,3-butanediol, and 1,4-butanediol. The effect of the hydroxyl group position in butanediols on their electro-oxidation reactivities is investigated by cyclic voltammetry, linear sweep voltammetry, chronopotentiometry and chronoamperometry in 1.0 M KOH. The results show that the closer the two hydroxyl groups are, the higher the reactivity, and the lower the anodic potential butanediol has. Moreover, the oxidation products from chronoamperometry are analyzed by means of HPLC and NMR. Some value-added products, such as 3-hydroxypropionic acid/3-hydroxypropionate, are produced. The DFT calculation indicates that the oxidation of vicinal diols responds to the conversion from a hydroxyl group to a carboxylate group, followed by C-C bond cleavage, where the carbon charge decreases. These results provide an insight into reactant selection for the electrochemical synthesis of value-added chemicals.