Applied machine learning for blood pressure estimation using a small, real-world electrocardiogram and photoplethysmogram dataset

Applying machine learning techniques to electrocardiography and photoplethysmography signals and their multivariate-derived waveforms is an ongoing effort to estimate non-occlusive blood pressure. Unfortunately, real ambulatory electrocardiography and photoplethysmography waveforms are inevitably af...

Full description

Saved in:
Bibliographic Details
Main Authors: Wong, Mark Kei Fong, Hei, Hao, Lim, Si Zhou, Ng, Eddie Yin Kwee
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/168547
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Applying machine learning techniques to electrocardiography and photoplethysmography signals and their multivariate-derived waveforms is an ongoing effort to estimate non-occlusive blood pressure. Unfortunately, real ambulatory electrocardiography and photoplethysmography waveforms are inevitably affected by motion and noise artifacts, so established machine learning architectures perform poorly when trained on data of the Multiparameter Intelligent Monitoring in Intensive Care II type, a publicly available ICU database. Our study addresses this problem by applying four well-established machine learning methods, i.e., random forest regression, support vector regression, Adaboost regression and artificial neural networks, to a small, self-sampled electrocardiography-photoplethysmography dataset (n = 54) to improve the robustness of machine learning to real-world BP estimates. We evaluated the performance using a selection of optimal feature morphologies of waveforms by using pulse arrival time, morphological and frequency photoplethysmography parameters and heart rate variability as characterization data. On the basis of the root mean square error and mean absolute error, our study showed that support vector regression gave the best performance for blood pressure estimation from noisy data, achieving an mean absolute error of 6.97 mmHg, which meets the level C criteria set by the British Hypertension Society. We demonstrate that ambulatory electrocardiography- photoplethysmography signals acquired by mobile discrete devices can be used to estimate blood pressure.