PSO-based model predictive control for load frequency regulation with wind turbines
With the high penetration of wind turbines, many issues need to be addressed in relation to load frequency control (LFC) to ensure the stable operation of power grids. The particle swarm optimization-based model predictive control (PSO-MPC) approach is presented to address this issue in the context...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/168628 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | With the high penetration of wind turbines, many issues need to be addressed in relation to load frequency control (LFC) to ensure the stable operation of power grids. The particle swarm optimization-based model predictive control (PSO-MPC) approach is presented to address this issue in the context of LFC with the participation of wind turbines. The classical MPC model was modified to incorporate the particle swarm optimization algorithm for the power generation model to regulate the system frequency. In addition to addressing the unpredictability of wind turbine generation, the presented PSO-MPC strategy not only addresses the randomness of wind turbine generation, but also reduces the computation burden of traditional MPC. The simulation results validate the effectiveness and feasibility of the PSO-MPC approach as compared with other state-of-the-art strategies. |
---|