Continual learning for time series data analytics
Various traditional time-series forecasting models have been implemented in the past, including ARIMA, but they are limited in their ability to capture complex non-linear relationships and adjust to new data, leading to inaccurate predictions. The section also mentions some machine learning methodol...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/168683 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-168683 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1686832023-07-07T15:54:29Z Continual learning for time series data analytics Zhong, Zhenlin Soh Yeng Chai School of Electrical and Electronic Engineering EYCSOH@ntu.edu.sg Engineering::Electrical and electronic engineering Various traditional time-series forecasting models have been implemented in the past, including ARIMA, but they are limited in their ability to capture complex non-linear relationships and adjust to new data, leading to inaccurate predictions. The section also mentions some machine learning methodologies such as SVM that have shown promising results in HVAC load forecasting. This project aims to address the limitations of conventional time-series forecasting models by utilizing a Recurrent Neural Network (RNN) - Long-Short Term Memory (LSTM) model and implementing Continual Learning (CL) - incremental learning methodology to optimize the model's self-learning ability. The objective is to enhance energy consumption efficiency while maintaining the desired thermal comfort level for HVAC systems in Singapore. The project involves data pre-processing, applying the RNN-LSTM model, assessing the model's performance, optimizing it with CL, comparing forecasting results, and exploring interdependence among various HVAC system parameters. The RNN-LSTM model performed well on the training data and showed promise for accurate prediction. The incremental learning approach effectively integrated new data during each iteration, enhancing the model's performance. Finally, linear regression and Granger Causality analyses provided insights into the linear relationship between the "AHU" and "FCU" variables, with the coefficients and intercept values being useful for predictions and showing a significant causal relationship between the two variables at lag 1. Bachelor of Engineering (Electrical and Electronic Engineering) 2023-06-14T08:18:40Z 2023-06-14T08:18:40Z 2023 Final Year Project (FYP) Zhong, Z. (2023). Continual learning for time series data analytics. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/168683 https://hdl.handle.net/10356/168683 en B1103-221 application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Electrical and electronic engineering |
spellingShingle |
Engineering::Electrical and electronic engineering Zhong, Zhenlin Continual learning for time series data analytics |
description |
Various traditional time-series forecasting models have been implemented in the past, including ARIMA, but they are limited in their ability to capture complex non-linear relationships and adjust to new data, leading to inaccurate predictions. The section also mentions some machine learning methodologies such as SVM that have shown promising results in HVAC load forecasting. This project aims to address the limitations of conventional time-series forecasting models by utilizing a Recurrent Neural Network (RNN) - Long-Short Term Memory (LSTM) model and implementing Continual Learning (CL) - incremental learning methodology to optimize the model's self-learning ability. The objective is to enhance energy consumption efficiency while maintaining the desired thermal comfort level for HVAC systems in Singapore. The project involves data pre-processing, applying the RNN-LSTM model, assessing the model's performance, optimizing it with CL, comparing forecasting results, and exploring interdependence among various HVAC system parameters. The RNN-LSTM model performed well on the training data and showed promise for accurate prediction. The incremental learning approach effectively integrated new data during each iteration, enhancing the model's performance. Finally, linear regression and Granger Causality analyses provided insights into the linear relationship between the "AHU" and "FCU" variables, with the coefficients and intercept values being useful for predictions and showing a significant causal relationship between the two variables at lag 1. |
author2 |
Soh Yeng Chai |
author_facet |
Soh Yeng Chai Zhong, Zhenlin |
format |
Final Year Project |
author |
Zhong, Zhenlin |
author_sort |
Zhong, Zhenlin |
title |
Continual learning for time series data analytics |
title_short |
Continual learning for time series data analytics |
title_full |
Continual learning for time series data analytics |
title_fullStr |
Continual learning for time series data analytics |
title_full_unstemmed |
Continual learning for time series data analytics |
title_sort |
continual learning for time series data analytics |
publisher |
Nanyang Technological University |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/168683 |
_version_ |
1772827732810399744 |