Polymerizable rotaxane hydrogels for three-dimensional printing fabrication of wearable sensors
While hydrogels enable a variety of applications in wearable sensors and electronic skins, they are susceptible to fatigue fracture during cyclic deformations owing to their inefficient fatigue resistance. Herein, acrylated β-cyclodextrin with bile acid is self-assembled into a polymerizable pseudor...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/168754 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | While hydrogels enable a variety of applications in wearable sensors and electronic skins, they are susceptible to fatigue fracture during cyclic deformations owing to their inefficient fatigue resistance. Herein, acrylated β-cyclodextrin with bile acid is self-assembled into a polymerizable pseudorotaxane via precise host-guest recognition, which is photopolymerized with acrylamide to obtain conductive polymerizable rotaxane hydrogels (PR-Gel). The topological networks of PR-Gel enable all desirable properties in this system due to the large conformational freedom of the mobile junctions, including the excellent stretchability along with superior fatigue resistance. PR-Gel based strain sensor can sensitively detect and distinguish large body motions and subtle muscle movements. The three-dimensional printing fabricated sensors of PR-Gel exhibit high resolution and altitude complexity, and real-time human electrocardiogram signals are detected with high repeating stability. PR-Gel can self-heal in air, and has highly repeatable adhesion to human skin, demonstrating its great potential in wearable sensors. |
---|