Evaluation of integrated CNN, transfer learning, and BN with thermography for breast cancer detection
Breast cancer comprises a serious public health concern. The three primary techniques for detecting breast cancer are ultrasound, mammography, and magnetic resonance imaging (MRI). However, the existing methods of diagnosis are not practical for regular mass screening at short time intervals. Thermo...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/168855 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-168855 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1688552023-06-24T16:47:53Z Evaluation of integrated CNN, transfer learning, and BN with thermography for breast cancer detection Aidossov, N. Zarikas, Vasilios Mashekova, Aigerim Zhao, Yong Ng, Eddie Yin Kwee Midlenko, Anna Mukhmetov, Olzhas School of Mechanical and Aerospace Engineering Engineering::Mechanical engineering Breast Cancer Thermography Breast cancer comprises a serious public health concern. The three primary techniques for detecting breast cancer are ultrasound, mammography, and magnetic resonance imaging (MRI). However, the existing methods of diagnosis are not practical for regular mass screening at short time intervals. Thermography could be a solution to this issue because it is a non-invasive and low-cost method that can be used routinely as a self-screening method. The research significance of this work lies in the implementation and integration of multiple different AI techniques for achieving diagnosis based on breast thermograms from several data sources. The data sources contain 306 images. The concept of transfer learning with several pre-trained models is implemented. Bayesian Networks (BNs) are also used to have interpretability of the diagnosis. A novel feature extraction from images (related to temperature) has been implemented and feeds the BNs. Finally, all methods and the classification results of pre-trained models are compared. It is found that the best result amongst the transfer learning concept is achieved with MobileNet, which delivered 93.8% accuracy. Furthermore, the BN achieves an accuracy of 90.20%, and finally, the expert model that combines CNNs and BNs gives an accuracy of 90.85%, even with a limited amount of data available. The integration of CNN and BN aims to overcome the hardship of interpretability. These approaches demonstrate high performance with added interpretability compared to previous works. In conclusion, the deep neural network provides promising results in breast cancer detection. It could be an ideal candidate for Breast Self-Exam (BSE), the goal recommended by WHO for mass screening. Published version This research has been funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP08857347 “Integrating Physic-Informed Neural Network, Bayesian and Convolutional Neural Networks for early breast cancer detection using thermography”). 2023-06-20T07:09:59Z 2023-06-20T07:09:59Z 2023 Journal Article Aidossov, N., Zarikas, V., Mashekova, A., Zhao, Y., Ng, E. Y. K., Midlenko, A. & Mukhmetov, O. (2023). Evaluation of integrated CNN, transfer learning, and BN with thermography for breast cancer detection. Applied Sciences, 13(1), 600-. https://dx.doi.org/10.3390/app13010600 2076-3417 https://hdl.handle.net/10356/168855 10.3390/app13010600 2-s2.0-85145829334 1 13 600 en Applied Sciences © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Mechanical engineering Breast Cancer Thermography |
spellingShingle |
Engineering::Mechanical engineering Breast Cancer Thermography Aidossov, N. Zarikas, Vasilios Mashekova, Aigerim Zhao, Yong Ng, Eddie Yin Kwee Midlenko, Anna Mukhmetov, Olzhas Evaluation of integrated CNN, transfer learning, and BN with thermography for breast cancer detection |
description |
Breast cancer comprises a serious public health concern. The three primary techniques for detecting breast cancer are ultrasound, mammography, and magnetic resonance imaging (MRI). However, the existing methods of diagnosis are not practical for regular mass screening at short time intervals. Thermography could be a solution to this issue because it is a non-invasive and low-cost method that can be used routinely as a self-screening method. The research significance of this work lies in the implementation and integration of multiple different AI techniques for achieving diagnosis based on breast thermograms from several data sources. The data sources contain 306 images. The concept of transfer learning with several pre-trained models is implemented. Bayesian Networks (BNs) are also used to have interpretability of the diagnosis. A novel feature extraction from images (related to temperature) has been implemented and feeds the BNs. Finally, all methods and the classification results of pre-trained models are compared. It is found that the best result amongst the transfer learning concept is achieved with MobileNet, which delivered 93.8% accuracy. Furthermore, the BN achieves an accuracy of 90.20%, and finally, the expert model that combines CNNs and BNs gives an accuracy of 90.85%, even with a limited amount of data available. The integration of CNN and BN aims to overcome the hardship of interpretability. These approaches demonstrate high performance with added interpretability compared to previous works. In conclusion, the deep neural network provides promising results in breast cancer detection. It could be an ideal candidate for Breast Self-Exam (BSE), the goal recommended by WHO for mass screening. |
author2 |
School of Mechanical and Aerospace Engineering |
author_facet |
School of Mechanical and Aerospace Engineering Aidossov, N. Zarikas, Vasilios Mashekova, Aigerim Zhao, Yong Ng, Eddie Yin Kwee Midlenko, Anna Mukhmetov, Olzhas |
format |
Article |
author |
Aidossov, N. Zarikas, Vasilios Mashekova, Aigerim Zhao, Yong Ng, Eddie Yin Kwee Midlenko, Anna Mukhmetov, Olzhas |
author_sort |
Aidossov, N. |
title |
Evaluation of integrated CNN, transfer learning, and BN with thermography for breast cancer detection |
title_short |
Evaluation of integrated CNN, transfer learning, and BN with thermography for breast cancer detection |
title_full |
Evaluation of integrated CNN, transfer learning, and BN with thermography for breast cancer detection |
title_fullStr |
Evaluation of integrated CNN, transfer learning, and BN with thermography for breast cancer detection |
title_full_unstemmed |
Evaluation of integrated CNN, transfer learning, and BN with thermography for breast cancer detection |
title_sort |
evaluation of integrated cnn, transfer learning, and bn with thermography for breast cancer detection |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/168855 |
_version_ |
1772827423734235136 |