Internet of things (IoT)-based environmental monitoring and control system for home-based mushroom cultivation

The control and monitoring of the environmental conditions in mushroom cultivation has been a challenge in the mushroom industry. Currently, research has been conducted to implement successful remote environmental monitoring, or, in some cases, remote environmental control, yet there is not yet a co...

Full description

Saved in:
Bibliographic Details
Main Authors: Chong, Jiu Li, Chew, Kit Wayne, Peter, Angela Paul, Ting, Huong Yong, Show, Pau Loke
Other Authors: School of Chemistry, Chemical Engineering and Biotechnology
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/168857
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The control and monitoring of the environmental conditions in mushroom cultivation has been a challenge in the mushroom industry. Currently, research has been conducted to implement successful remote environmental monitoring, or, in some cases, remote environmental control, yet there is not yet a combination of both these systems providing live stream images or video. As a result, this research aimed to design and develop an Internet of things (IoT)-based environmental control and monitoring system for mushroom cultivation, whereby the growth conditions of the mushrooms, such as temperature, humidity, light intensity, and soil moisture level, are remotely monitored and controlled through a mobile and web application. Users would be able to visualize the growth of the mushroom remotely by video and images through the Internet. The respective sensors are implemented into the mushroom cultivation process and connected to the NodeMCU microcontroller, which collects and transfers the data to the cloud server, enabling remote access at any time through the end device with internet connection. The control algorithm regulates the equipment within the cultivational chamber autonomously, based on feedback from the sensors, in order to retain the optimum environment for the cultivation of mushrooms. The sensors were tested and compared with manual readings to ensure their accuracy. The implementation of IoT toward mushroom cultivation would greatly contribute to the advancement of the current mushroom industry which still applies the traditional cultivation approach.