Photonic bandgap fiber microlaser with dual-band emission for integrated optical tagging and sensing
Lasers are emerging as novel photonic tags for single-cell labeling, anticounterfeiting, and encryption technology due to their narrow linewidth, high spectral multiplexing capacity, and superior stimuli-responsiveness. These laser-encoded photonic tags mostly distinguish the heterogeneity but do no...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/168883 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Lasers are emerging as novel photonic tags for single-cell labeling, anticounterfeiting, and encryption technology due to their narrow linewidth, high spectral multiplexing capacity, and superior stimuli-responsiveness. These laser-encoded photonic tags mostly distinguish the heterogeneity but do not yet provide both tagging and sensing of biosamples, which is highly desirable for disease screening. Here, a photonic bandgap (PBG) fiber microlaser that works as a 2D tag and an immunosensor is developed. The tubular PBG structure allows strong light–matter interaction and supports dual-band lasing in the same optical fiber, enabling massive biosample tagging and sensitive biodetection. By encoding the random resonant peaks in the short-wave band and multiplexing in the spatial domain, a 2D laser tag is generated with a large encoding capacity (>28500). Immunosensing of microalbumin is realized by using the periodic resonant peaks in the long-wave band, and a limit of detection of 0.06 ng µL−1 is achieved. This work is inspiring for the development of high-performance, multifunctional integrated devices for disease screening. |
---|