Liquid crystal monomer: a potential PPARγ antagonist

Liquid crystal monomers (LCMs) are a large family of artificial ingredients that have been widely used in global liquid crystal display (LCD) industries. As a major constituent in LCDs as well as the end products of e-waste dismantling, LCMs are of growing research interest with regard to their envi...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao, Haoduo, Li, Caixia, Naik, Mihir Yogesh, Wu, Jia, Cardilla, Angelysia, Liu, Min, Zhao, Fanrong, Snyder, Shane Allen, Xia, Yun, Su, Guanyong, Fang, Mingliang
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/168935
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Liquid crystal monomers (LCMs) are a large family of artificial ingredients that have been widely used in global liquid crystal display (LCD) industries. As a major constituent in LCDs as well as the end products of e-waste dismantling, LCMs are of growing research interest with regard to their environmental occurrences and biochemical consequences. Many studies have analyzed LCMs in multiple environmental matrices, yet limited research has investigated the toxic effects upon exposure to them. In this study, we combined in silico simulation and in vitro assay validation along with omics integration analysis to achieve a comprehensive toxicity elucidation as well as a systematic mechanism interpretation of LCMs for the first time. Briefly, the high-throughput virtual screen and reporter gene assay revealed that peroxisome proliferator-activated receptor gamma (PPARγ) was significantly antagonized by certain LCMs. Besides, LCMs induced global metabolome and transcriptome dysregulation in HK2 cells. Notably, fatty acid β-oxidation was conspicuously dysregulated, which might be mediated through multiple pathways (IL-17, TNF, and NF-kB), whereas the activation of AMPK and ligand-dependent PPARγ antagonism may play particularly important parts. This study illustrated LCMs as a potential PPARγ antagonist and explored their toxicological mode of action on the trans-omics level, which provided an insightful overview in future chemical risk assessment.