Deep generative fixed-filter active noise control

Due to the slow convergence and poor tracking ability, conventional LMS-based adaptive algorithms are less capable of handling dynamic noises. Selective fixed-filter active noise control (SFANC) can significantly reduce response time by selecting appropriate pre-trained control filters for different...

Full description

Saved in:
Bibliographic Details
Main Authors: Luo, Zhengding, Shi, Dongyuan, Shen, Xiaoyi, Ji, Junwei, Gan, Woon-Seng
Other Authors: School of Electrical and Electronic Engineering
Format: Conference or Workshop Item
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/169105
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Due to the slow convergence and poor tracking ability, conventional LMS-based adaptive algorithms are less capable of handling dynamic noises. Selective fixed-filter active noise control (SFANC) can significantly reduce response time by selecting appropriate pre-trained control filters for different noises. Nonetheless, the limited number of pre-trained control filters may affect noise reduction performance, especially when the incoming noise differs much from the initial noises during pre-training. Therefore, a generative fixed-filter active noise control (GFANC) method is proposed in this paper to overcome the limitation. Based on deep learning and a perfect-reconstruction filter bank, the GFANC method only requires a few prior data (one pre-trained broadband control filter) to automatically generate suitable control filters for various noises. The efficacy of the GFANC method is demonstrated by numerical simulations on real-recorded noises.