Learning urban region representations with POIs and hierarchical graph infomax
We present the hierarchical graph infomax (HGI) approach for learning urban region representations (vector embeddings) with points-of-interest (POIs) in a fully unsupervised manner, which can be used in various downstream tasks. Specifically, HGI comprises several key steps: (1) training category em...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/169131 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |