Learning urban region representations with POIs and hierarchical graph infomax
We present the hierarchical graph infomax (HGI) approach for learning urban region representations (vector embeddings) with points-of-interest (POIs) in a fully unsupervised manner, which can be used in various downstream tasks. Specifically, HGI comprises several key steps: (1) training category em...
Saved in:
Main Authors: | Huang, Weiming, Zhang, Daokun, Mai, Gengchen, Guo, Xu, Cui, Lizhen |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/169131 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Learning hierarchical review graph representations for recommendation
由: Liu, Yong, et al.
出版: (2022) -
Urban region representation learning with human trajectories: a multi-view approach incorporating transition, spatial, and temporal perspectives
由: Zhang, Yu, et al.
出版: (2024) -
A multi-hierarchical aggregation-based graph convolutional network for industrial knowledge graph embedding towards cognitive intelligent manufacturing
由: Liu, Bufan, et al.
出版: (2024) -
Modeling bipartite graphs using hierarchical structures
由: CHUA, Freddy Chong-Tat, et al.
出版: (2011) -
Heterogeneous graph neural network with multi-view representation learning
由: SHAO, Zezhi, et al.
出版: (2023)