Synthesizing metal oxide semiconductors on doped Si/SiO₂ flexible fiber substrates for wearable gas sensing
Traditional metal oxide semiconductor (MOS) gas sensors have limited applications in wearable devices owing to their inflexibility and high-power consumption by substantial heat loss. To overcome these limitations, we prepared doped Si/SiO2 flexible fibers by a thermal drawing method as substrates t...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/169246 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Traditional metal oxide semiconductor (MOS) gas sensors have limited applications in wearable devices owing to their inflexibility and high-power consumption by substantial heat loss. To overcome these limitations, we prepared doped Si/SiO2 flexible fibers by a thermal drawing method as substrates to fabricate MOS gas sensors. A methane (CH4) gas sensor was demonstrated by subsequently in situ synthesizing Co-doped ZnO nanorods on the fiber surface. The doped Si core acted as the heating source through Joule heating, which conducted heat to the sensing material with reduced heat loss; the SiO2 cladding was an insulating substrate. The gas sensor was integrated into a miner cloth as a wearable device, and the concentration change of CH4 was monitored in real time through different colored light-emitting diodes. Our study demonstrated the feasibility of using doped Si/SiO2 fibers as the substrates to fabricate wearable MOS gas sensors, where the sensors have substantial advantages over tradition sensors in flexibility, heat utilization, etc. |
---|