Bulk-plasmon-mediated free-electron radiation beyond the conventional formation time

Free-electron radiation is a fundamental photon emission process that is induced by fast-moving electrons interacting with optical media. Historically, it has been understood that, just like any other photon emission process, free-electron radiation must be constrained within a finite time interval...

Full description

Saved in:
Bibliographic Details
Main Authors: Tay, Fuyang, Lin, Xiao, Shi, Xihang, Chen, Hongsheng, Kaminer, Ido, Zhang, Baile
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/169266
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Free-electron radiation is a fundamental photon emission process that is induced by fast-moving electrons interacting with optical media. Historically, it has been understood that, just like any other photon emission process, free-electron radiation must be constrained within a finite time interval known as the "formation time," whose concept is applicable to both Cherenkov radiation and transition radiation, the two basic mechanisms describing radiation from a bulk medium and from an interface, respectively. Here, this work reveals an alternative mechanism of free-electron radiation far beyond the previously defined formation time. It occurs when a fast electron crosses the interface between vacuum and a plasmonic medium supporting bulk plasmons. While emitted continuously from the crossing point on the interface-thus consistent with the features of transition radiation-the extra radiation beyond the conventional formation time is supported by a long tail of bulk plasmons following the electron's trajectory deep into the plasmonic medium. Such a plasmonic tail mixes surface and bulk effects, and provides a sustained channel for electron-interface interaction. These results also settle the historical debate in Ferrell radiation, regarding whether it is a surface or bulk effect, from transition radiation or plasmonic oscillation.