Bayesian estimation and optimization for learning sequential regularized portfolios
This paper incorporates Bayesian estimation and optimization into a portfolio selection framework, particularly for high-dimensional portfolios in which the number of assets is larger than the number of observations. We leverage a constrained \ell 1 minimization approach, called the linear programmi...
Saved in:
Main Authors: | Marisu, Godeliva Petrina, Pun, Chi Seng |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/169279 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Bayesian estimation and optimization for high-dimensional portfolio selection
由: Marisu, Godeliva Petrina
出版: (2020) -
Resolution of degeneracy in Merton's portfolio problem
由: Pun, Chi Seng, et al.
出版: (2018) -
Another construction of edge-regular graphs with regular cliques
由: Greaves, Gary Royden Watson, et al.
出版: (2020) -
Edge-regular graphs with regular cliques
由: Greaves, Gary Royden Watson, et al.
出版: (2019) -
A linear programming model for selection of sparse high-dimensional multiperiod portfolios
由: Pun, Chi Seng, et al.
出版: (2018)