Improving homogeneity of 3D-printed cementitious material distribution for radial toolpath
The 3D cementitious material printing method is an extrusion-based additive manufacturing strategy in which cementitious materials are extruded through a dynamic nozzle system to form filaments. Despite its ability to fabricate structures with high complexity and efficiency, the uneven material dist...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/169284 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The 3D cementitious material printing method is an extrusion-based additive manufacturing strategy in which cementitious materials are extruded through a dynamic nozzle system to form filaments. Despite its ability to fabricate structures with high complexity and efficiency, the uneven material distribution during the extrusion and deposition process is often encountered when a radial toolpath is introduced. This limits the design freedom and printing parameters that can be utilized during radial toolpath printing. Here, we report a facile strategy to overcome the existing challenges of cementitious material non-homogeneity by rationally developing new nozzle geometries that passively compensate the differential deposition rate encountered in conventional rectangular nozzles. Using two-phase numerical study, we showed that our strategy has the potential of achieving a homogeneous mass distribution even when the nozzle travel speed is unfavorably high, while filament from a rectangular nozzle remains highly non-homogenous. The material distribution unevenness can be reduced from 1.35 to 1.23 and to 0.98 after adopting trapezoid and gaussian nozzles, indicating improvements of 34.3% and 94.2%, respectively. This work not only outlines the methodology for improving the quality of corner/curved features in 3DCMP, but also introduces a new strategy which can be adopted for other extrusion-based fabrication techniques with high material inertia. |
---|